三对角系统并行算法的研究概况概要

三对角系统并行算法的研究概况概要

三对角系统并行算法的研究概况

三对角系统并行算法的研究概况概要

三对角系统并行算法的研究概况概要

三对角系统并行算法的研究概况概要

【摘要】在科学和工程计算中,许多问题往往归结为三对角线性方程组的求解,其并行算法的研究具有重要意义。文章全面总结了当前求解三对角线性方程组的两类并行算法:直接解法和迭代解法,并介绍了其特点。

【关键词】三对角线性方程组;分治策略;并行算法;算法可扩展性

一、概述

三对角线性方程组的求解是许多科学和工程计算中最重要也是最基本的问题之一。在核物理、流体力学、油藏工程、石油地震数据处理及数值天气预报等许多领域的大规模科学工程和数值处理中都会遇到三对角系统的求解问题。很多三对角线性方程组的算法可以直接推广到求解块三对角及带状线性方程组。由于在理论和实际应用上的重要性,近20年来三对角方程组的并行算法研究十分活跃。

大规模科学计算需要高性能的并行计算机。随着软硬件技术的发展,高性能的并行计算机日新月异。现今,SMP可构成每秒几十亿次运算的系统,PVP和COW可构成每秒几百亿次运算的系统,而MPP和DSM可构成每秒万亿次运算或更高的系统。

高性能并行计算机只是给大型科学计算提供了计算工具。如何发挥并行计算机的潜在性能和对三对角系统进行有效求解,其关键在于抓住并行计算的特点进行并行算法的研究和程序的设计与实现。另外,对处理机个数较多的并行计算系统,在设计并行算法时必须解决算法的可扩展性,并对可扩展性进行研究和分析。

二、问题的提出

设三对角线性方程组为

AX=Y

( 1)

式中:A∈Rn×n非奇异,αij=0,。

X=(x1,x2,…xn)T Y=(y1,y2,…yn)T。

此系统在许多算法中被提出,因此研究其高性能并行算法是很有理论和实际意义的。

三、并行求解三对角系统的直接解法

相关推荐
相关主题
热门推荐